On Cubic Bridgeless Graphs Whose Edge-Set Cannot be Covered by Four Perfect Matchings
نویسندگان
چکیده
The problem of establishing the number of perfect matchings necessary to cover the edge-set of a cubic bridgeless graph is strictly related to a famous conjecture of Berge and Fulkerson. In this paper we prove that deciding whether this number is at most 4 for a given cubic bridgeless graph is NP-complete. We also construct an infinite family F of snarks (cyclically 4-edge-connected cubic graphs of girth at least five and chromatic index four) whose edge-set cannot be covered by 4 perfect matchings. Only two such graphs were known. It turns out that the family F also has interesting properties with respect to the shortest cycle cover problem. The shortest cycle cover of any cubic bridgeless graph with m edges has length at least 43m, and we show that this inequality is strict for graphs of F . We also construct the first known snark with no cycle cover of length less than 4 3m+ 2.
منابع مشابه
On the perfect matching index of bridgeless cubic graphs
If G is a bridgeless cubic graph, Fulkerson conjectured that we can find 6 perfect matchings M1, . . . ,M6 of G with the property that every edge of G is contained in exactly two of them and Berge conjectured that its edge set can be covered by 5 perfect matchings. We define τ(G) as the least number of perfect matchings allowing to cover the edge set of a bridgeless cubic graph and we study thi...
متن کاملUnions of Perfect Matchings in Cubic Graphs and Implications of the Berge-Fulkerson Conjecture
The Berge-Fulkerson Conjecture states that every cubic bridgeless graph has six perfect matchings such that every edge of the graph is in exactly two of the perfect matchings. If the Berge-Fulkerson Conjecture is true, then what can we say about the proportion of edges of a cubic bridgeless graph that can be covered by k of its perfect matchings? This is the question we address in this paper. W...
متن کاملTRACTATUS on disjoint matchings in cubic graphs
In early 70s Berge conjectured that any bridgeless cubic graph contains five perfect matchings such that each edge belongs to at least one of them. In 1972 Fulkerson conjectured that, in fact, we can find six perfect matchings containing each edge exactly twice. By introducing the concept of an r-graph (a remarkable generalization of one of bridgeless cubic graph) Seymour in 1979 conjectured th...
متن کاملCovering a cubic graph by 5 perfect matchings
Berge Conjecture states that every bridgeless cubic graph has 5 perfect matchings such that each edge is contained in at least one of them. In this paper, we show that Berge Conjecture holds for two classes of cubic graphs, cubic graphs with a circuit missing only one vertex and bridgeless cubic graphs with a 2-factor consisting of two circuits. The first part of this result implies that Berge ...
متن کاملM\'acajov\'a and \v{S}koviera Conjecture on Cubic Graphs
A conjecture of M\'a\u{c}ajov\'a and \u{S}koviera asserts that every bridgeless cubic graph has two perfect matchings whose intersection does not contain any odd edge cut. We prove this conjecture for graphs with few vertices and we give a stronger result for traceable graphs.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Graph Theory
دوره 77 شماره
صفحات -
تاریخ انتشار 2014